Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner.

Wood Mackenzie – CCS could have ‘material impact’ on LNG emissions

CCS LNG Wood Mackenzie
Waiting: an LNG tanker moored at a gas terminal

Carbon capture and storage (CCS) could have a “material impact” on the carbon emissions of liquefied natural gas (LNG) projects, according to analysts.

Wood Mackenzie says that, depending on the strategy adopted, more than 25% of overall carbon emissions from LNG developments could be removed.

In step with global decarbonisation efforts, LNG players are under increasing pressure to take steps to cut their emissions.

The sector is “one of the most emissions-intensive upstream resource themes”, Wood Mackenzie said.

Daniel Toleman, Wood Mackenzie senior analyst, said: “Around 40% of the total scope 1 and 2 LNG emissions are from the process of gas liquefaction. That said, not all LNG projects are created equal from an emissions perspective. Each plant has a unique emissions profile and hence the best way to reduce the carbon footprint of an Arctic LNG plant may vary significantly from one in Qatar or Australia.

“The main options for reducing LNG emissions include CCS, carbon offsets, methane leakage reduction, electrification, and the use of renewables and batteries. CCS can have a material impact on reducing emissions of LNG projects. Depending on the CCS strategy adopted, we estimate that more than 25% of carbon emissions can be removed.

“The good news is that LNG players are well placed to lead the CCS charge, with strong balance sheets, operational capability and reservoir expertise. There are also economic incentives for pursuing CCS as reducing emissions mitigates against a carbon tax, helps future-proof the asset and can offer pricing upside.”

There are two main approaches to deploying CCS at LNG projects; capturing CO2 from the reservoir and capturing post-combustion emissions.

Approach one delivers “significant cost advantages” by using an acid gas removal unit (AGRU) to bag emissions.

Wood Mackenzie said reservoir CCS can reduce the overall intensity of LNG projects by 25%, and in some cases up to 50%.

In contrast, the second approach, post-combustion CCS, involves capturing emissions from the LNG flue gas stream.

The process is more expensive than reservoir CCS but it does deliver cost benefits, due to design and location synergies.

Tax credits or other policy incentives may also help improve the economics of post-combustion CCS, Wood Mackenzie said.

Toleman said: “CCS will play a significant role in reducing emissions from LNG projects as long as country-specific legislation progresses, and costs can be brought down. Low-cost reservoir CCS projects are likely to be the first to move ahead. Look out for projects in Qatar, Australia, Malaysia and Timor Leste. LNG players in the US, who benefit from the 45Q tax credit, will likely be the first LNG players to take post-combustion CCS forward.”

Recommended for you

More from Energy Voice

Latest Posts